

Guía docente 295623 – 295MB022 – Biomarcadores digitales e inteligencia artificial en el ámbito sanitario

Unidad responsable:	295 - Escuela de Ingeniería de Barcelona Este (EEBE)		
Unidad que imparte:	707 - Departamento de Ingeniería de Sistemas, Automática e Informática Industrial (ESAII)		
Titulación	Máster Universitario en Tecnologías Biomédicas Avanzadas		
Curso	2025	Créditos ECTS	6
Idiomas	Castellano	Tipo	Obligatoria

PROFESORADO	
Profesorado responsable:	Lozano García, Manuel
Otros:	Torres Cebrián, Abel

PRESENTACIÓN DE LA ASIGNATURA

Esta asignatura presenta un conjunto de conceptos fundamentales para introducirse en el mundo de los biomarcadores digitales y la inteligencia artificial (*artificial intelligence*, AI) en salud. Se proporcionará una visión general de los aspectos técnicos y éticos en proyectos de AI en el sector sanitario y se proporcionarán conocimientos básicos de programación y tratamiento de datos para la extracción de biomarcadores digitales y el desarrollo de modelos de AI y su aplicación en el diagnóstico y seguimiento de distintas patologías.

CAPACIDADES PREVIAS

Se requieren conocimientos previos de:

- Fundamentos de fisiología y biología
- Procesado y análisis de señales biomédicas

Se recomienda haber superado la asignatura de Análisis de Señales Biomédicas del primer semestre.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

- C1 Integrarse en equipos de trabajo, participar y asumir responsabilidades en la gestión de la producción, ya sea como un miembro más o realizando tareas de dirección o liderazgo.
- C2 Aplicar las metodologías apropiadas de gestión de proyectos y de equipos, productos y tecnologías biomédicas, en función del tipo de proyecto.
- C3 Identificar y analizar problemas que requieran tomar decisiones autónomas, informadas y argumentadas, para actuar con responsabilidad social, siguiendo valores y principios éticos.
- C4 Usar de forma solvente los recursos de información, gestionando la adquisición, estructuración, análisis y visualización de datos e información en el ámbito de su especialidad y valorando de forma crítica los resultados de esta gestión.
- C5 Utilizar la información científico-técnica para responder a cualquier demanda de modificación, innovación o mejora de dispositivos, productos y procesos ligados a la ingeniería biomédica para nuevas aplicaciones científicas o tecnológicas.
- C6 Integrar los valores de la sostenibilidad, entendiendo la complejidad de los sistemas, con el fin de emprender o promover acciones que establezcan y mantengan la salud de los ecosistemas y mejoren la justicia, generando así visiones para futuros sostenibles.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- Adquirir y aplicar conocimientos avanzados en biomarcadores digitales y técnicas de Al en tecnologías de la salud.
- Identificar y proponer biomarcadores digitales mediante análisis avanzado de señales biomédicas y técnicas de AI.

METODOLOGÍAS DOCENTES

La asignatura utiliza las siguientes metodologías:

- Clases expositivas participativas
- Prácticas de laboratorio
- Trabajo autónomo
- Trabajo en grupo cooperativo
- Debates
- Estudio de casos y discusión de artículos científicos
- Aprendizaje basado en proyectos

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO		
Tipo	Horas	Porcentaje
Horas grupo grande	30	20 %
Horas grupo pequeño	30	20 %
Horas aprendizaje autónomo	90	60 %
Dedicación total: 150 h		·

CONTENIDOS

Tema 1: Introducción a los biomarcadores o

Descripción:

- Definición de biomarcador digital
- Biomarcadores convencionales VS biomarcadores digitales

Data: 02/12/2024 **Pàgina 1** de **3**

- Tipos de biomarcadores digitales
- Adquisición de datos biomédicos. Dispositivos cableados y dispositivos wireless/wearable
- Ejemplos de biomarcadores digitales en el ámbito sanitario

Actividades vinculadas:

Estudio de casos prácticos y discusión de artículos científicos

Control final

Dedicación:

Grupo grande/Teoría: 3h Actividades dirigidas: 3h Aprendizaje autónomo: 4h

Tema 2: Biomarcadores digitales y señales biomédicas

Descripción:

- Señales biomédicas: electrocardiograma, electromiograma, electroencefalograma, etc.
- Ruido y pre-procesado de señales biomédicas
- Caracterización de señales biomédicas: feature engineering y extracción de parámetros. Parámetros temporales, frecuenciales, tiempo-frecuencia y estadísticos. Análisis de componentes principales (principal component analysis, PCA) para la caracterización de señales biomédicas

Actividades vinculadas:

Proyecto colaborativo

Prácticas de laboratorio

Estudio de casos prácticos y discusión de artículos científicos

Control final

Dedicación:

Grupo grande/Teoría: 6h Actividades dirigidas: 6h Aprendizaje autónomo: 20h

Tema 3: Preparación de los datos

Descripción:

- Exploración y visualización de los datos: distribución, histogramas, boxplots, scatter plots, etc.
- Transformación de los datos
- Selección de características: varianza, correlación, información, PCA para la selección de características

Actividades vinculadas:

Proyecto colaborativo

Prácticas de laboratorio

Estudio de casos prácticos y discusión de artículos científicos

Control final

Dedicación:

Grupo grande/Teoría: 6h Actividades dirigidas: 6h Aprendizaje autónomo: 20h

Tema 4: Introducción a la AI en salud

Descripción:

- Big data en salud y Al
- Tipos de modelos de AI
- Ejemplos de aplicación de la AI en salud
- Aspectos éticos y legales de la AI en salud
- Al en Python

Actividades vinculadas:

Prácticas de laboratorio

Estudio de casos prácticos y discusión de artículos científicos

Control final

Dedicación:

Grupo grande/Teoría: 3h Actividades dirigidas: 3h Aprendizaje autónomo: 6h

Tema 5: Modelos de *Machine Learning*

Descripción:

- Modelos supervisados: regresión logística, Support Vector Machine (SVM), k-Nearest Neighbour (kNN), decision tree, random forest, XGBoost, redes neuronales artificiales (artificial neural networks, ANN)
- Modelos no supervisados: k-means clustering
- Al en Python

Actividades vinculadas:

Proyecto colaborativo

Prácticas de laboratorio

Estudio de casos prácticos y discusión de artículos científicos

Control final

Dedicación:

Data: 02/12/2024 **Pàgina 2** de **3**

Grupo grande/Teoría: 6h Actividades dirigidas: 6h Aprendizaje autónomo: 20h

Tema 6: Modelos de Deep Learning

Descripción:

- Redes neuronales convolucionales
- Redes neuronales recurrentes
- Al en Python

Actividades vinculadas:

Proyecto colaborativo

Prácticas de laboratorio

Estudio de casos prácticos y discusión de artículos científicos

Control final

Dedicación:

Grupo grande/Teoría: 6h Actividades dirigidas: 6h Aprendizaje autónomo: 20h

ACTIVIDADES

- Proyecto colaborativo:
 - o Se realizará en grupos de 3 personas
 - o Se defenderá mediante una presentación al final del curso
 - o Se entregará también un informe técnico en forma de artículo científico de entre 4 y 7 páginas, junto con los archivos de código que se hayan generado
- Prácticas de laboratorio:
 - o Sesiones de laboratorio de 2 horas/semana
 - o Las prácticas se realizarán en grupos de 2 personas
 - Las prácticas abarcarán 2 o 3 sesiones consecutivas; se entregará un informe por pareja al final de estas sesiones, detallando los objetivos, actividades y resultados alcanzados
 - Se pondrán en prácticas los distintos conceptos teóricos expuestos en las clases teóricas
- Estudio de casos prácticos y discusión de artículos científicos:
 - o Se planteará el análisis crítico de artículos científicos y se evaluará mediante una de las siguientes actividades:
 - Pruebas escritas tipo test realizadas en clase
 - Una presentación oral en la que se expongan los principales hallazgos, conclusiones y propuestas de aplicación
- Control final

SISTEMA DE CALIFICACIÓN

Proyecto colaborativo = 30%

Informes de prácticas = 30%

Discusión de artículos = 15%

Control final = 25%

Especificación

No habrá examen de reevaluación en esta asignatura, en virtud del sistema de evaluación continua y del seguimiento formativo establecidos en la normativa académica.

BIBLIOGRAFÍA

- Jyotismita Talukdar, Thipendra P. Singh, Basanta Barman. Artificial Intelligence in Healthcare Industry. Serie: Advanced Technologies and Societal Change. Springer Singapore. 1ª edición. DOI: 10.1007/978-981-99-3157-6
- Adam Bohr, Kaveh Memarzadeh. Artificial Intelligence in Healthcare. Academic Press. ISBN: 978-0-12-818438-7
- Walid Zgallai. Biomedical Signal Processing and Artificial Intelligence in Healthcare. Academic Press. ISBN: 978-0-12-818946-7
- Maria Deprez, Emma C. Robinson. Machine Learning for Biomedical Applications. With Scikit-Learn and PyTorch. Academic Press. 1ª edición. ISBN: 9780128229057

RECURSOS

Otros recursos:

Recursos de aprendizaje disponibles en ATENEA (campus digital de la Universitat Politècnica de Catalunya - UPC)

Software: Matlab, Python

Bases de datos biomédicos

Laboratorio de ingeniería biomédica (A8.2)

Data: 02/12/2024 **Pàgina 3** de **3**