Universitat Politècnica de Catalunya – Universitat de Barcelona Máster oficial de Ingeniería de la Energía Ficha de descripción de asignatura 33550 Código: Interacción con la materia y Detección de las Radiaciones Asignatura Versión: Julio 09 **Ionizantes** Optativa **Créditos totales ECTS:** Horas/semana totales: Tipo: Castellano Créditos presenciales Teoría: 0,7 Horas/semana presenciales Teoría: Horas/crédito: 25 Créditos presenciales Problemas: 0,7 Horas/semana presenciales Problemas: 0 Cuatrimestre: Créditos presenciales Laboratorio: Horas/semana presenciales Laboratorio: Nivel: Horas/semana no presenciales: 6 Créditos no presenciales: CALVIÑO TAVARES, FRANCISCO (UPC) Coordinador: DE BLAS DEL HOYO, ALFREDO (UPC); CORTES ROSELL, GUILLEM (UPC) **Profesores:** Tutorías: Sección de Ingeniería Nuclear (Dpto Física e Ingeniería Nuclear) - ETSEIB, pabellón C - a horas Horario i lugar de convenidas tutorías: **Prerrequisitos:** Co-requisitos: La asignatura pretende: **Objetivos** • Proporcionar conocimientos sobre las radiaciones ionizantes (RI) en relación con su origen, generales: naturaleza, aplicaciones y detección. • Proporcionar conocimientos sobre los mecanismos de interacción de las RI con la materia. • Aportar los instrumentos físicos y matemáticos necesarios para abordar los cálculos más habituales de interacción de las RI • Iniciar en la manipulación y el uso de algunos dispositivos de detección de las radiaciones ionizantes, y en la interpretación de las señales y medidas de los dispositivos. • Iniciar en técnicas básicas de trabajo en grupo cooperativo. **Objetivos**

específicos de cada tema:

Objetivos - Trabajo cooperativo transversales: - Expresión oral y escrita

Programa de Teoría:

1. Conceptos básicos

Unidades de masa, energía y longitud propias de la física nuclear. Elementos de relatividad. Modelo estándar de la estructura de la materia y de las interacciones fundamentales.

2. Estructura y radiaciones atómicas

La radiación electromagnética: los fotones. El átomo. Niveles de energía atómica. Estados fundamentales y excitados del átomo. Procesos de desexcitación atómica. Excitación y ionización de sustancias: fluorescencia y fosforescencia. Rayos X.

3. El núcleo atómico.

El núcleo y las fuerzas nucleares. Tipo de nucleoides. Propiedades estáticas del núcleo. Estabilidad nuclear. elementos del modelo nuclear de capas. Niveles de energía nuclear. Estados fundamentales y excitados del núcleo.

4. Radiactividad. Introducción a los procesos radiactivos.

Tipos de procesos radiactivos. Ley de evolución temporal de la desintegración de sustancias radiactivas. elementos radiactivos naturales. Radiactividad artificial. Procesos alfa. Procesos beta. Emisión de rayos gamma.

5. Interacción de la radiación cargada con la materia.

Mecanismos de pérdida de energía. Pérdida y transferencia lineal de energía. Alcance. Interacción de las partículas alfa con la materia. Interacción de las partículas beta con la materia.

6. Interacción de la radiación electromagnética con la materia.

Efecto fotoeléctrico. Efecto Compton. Producción de pares. Atenuación y absorción de la radiación gamma.

7. Detección y tamaño

Ionización en gases. Detectores de ionización. Detectores de centelleo. Detectores de semiconductor. El proceso de detección y medida.

Prácticas de Laboratorio:

- Espectroscopia y atenuación de radiación gamma con sonda de escintil·lació y sistema multicanal
- Espectroscopia de radiación cargada (alfa) con detector semiconductor
- Tamaño de características de una fuente de radiación beta con detector de gas
- Estimaciones de atenuación y deposición de energía de haces de neutrones con códigos montecarlo

Actividades No Presenciales:

- 1.- Preparación de los aspectos más relevantes necesarios para contar las experiencias de laboratorio
- Búsqueda de información
- Elaboración de los aspectos teóricos
- Preparación de síntesis
- Trabajo en grupo de estudiantes de preparación de memorias de laboratorio, problemas y teoría

Actividades Presenciales:

- Presentación por parte de los profesores de algunos aspectos teóricos
- Trabajo en grupo de estudiantes de desarrollo de aspectos teóricos
- Trabajo en grupo de estudiantes de solución de problemas tipo
- Explicación entre estudiantes de aspectos teóricos y prácticos.
- Exposición por parte de los estudiantes

	Carga	semanal	del	estudiante	en	horas:
--	-------	---------	-----	------------	----	--------

- til- 8 tt is till till till																
Tipo de actividad / Semana	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
Teoría	2	2	2	2	2			1	2			2	2	1		18
Prácticas		2	2	2		2	2			2	2					14
Problemas																
Actividad No presencial	2	6	6	4	6	6	6	6	6	6	6	6	6	6	6	84
Trabajo individual																
Trabajo en grupo																
Pruebas y exámenes								1						1	2	4
Otras actividades																
																120

Rib	liogra	fía	Rác	ico.
BID	แดยเล	на	Bas	ICA:

Bibliografía Complementaria:

Criterio	de	eval	luación•
Criterio	ue	eval	luacion:

Controles parciales:	30%	Ejercicios/problemas:	%	Control final:	%
No presencial:	%	Prácticas:	35%	Otras pruebas:	35% (Entregas, exposiciones,)

Métodos de evaluación:

Se evaluará continuamente, teniendo en cuenta:

- La evaluación de cada practica se hará a través de una memoria y una exposición, en fechas fijas. Esta es una evaluación de grupo.
- La evaluación "Otros" se basará en entregas (3-4) y exposiciones (1-2) que se realizarán distribuidas uniformemente a lo largo del cuatrimestre. Una parte será individual y el otro de grupo
- Se harán dos controles de mínimos (semanas 8 y 14). Esta evaluación es individual
- Para optar a la calificación de Entregas (otros) se debe entregar al menos el 80% en los plazos establecidos.
- Los controles de mínimos deben superar ambos con un 80% de aciertos. Deberá posibilidad de recuperación.