ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL DE BARCELONA
INGENIERO/A TÉCNICO/A INDUSTRIAL. Especialidad en Mecánica.

Asignatura:	Conformado Plástico de Ma	Conformado Plástico de Materiales Metálicos			
			V	⁷ ersión: 2	2005
Tipo:	Créditos totales:	6	Horas/semana totales:		4
Optativa	Créditos presenciales de teoría:	3	Horas/semana presenciales	de teoría:	2
F	Créditos presenciales de problemas:	0.75	Horas/semana presenciales problemas:	de	0.5
Cuatrimestre:	Créditos presenciales de laboratorio:	1.5	Horas/semana presenciales laboratorio:	de	1
	Créditos no presenciales:	0.75	Horas/semana no presencia	ales:	0.5

Áreas de conocimiento (BOE): Ciencia de Materiales e Ingeniería Metalúrgica.

Descriptores (BOE): Mecanismos de deformación, endurecimiento y fallo de los materiales.

Comportamiento de los materiales durante los procesos de conformado.

Coordinador: Jordi Jorba

Pre-requisitos: FCM

Co-requisitos:

Objetivos: Describir el comportamiento de diferentes tipos de materiales en condiciones de

deformación en frio y en caliente, y presentar la variación de las propiedades de interés

tecnológico.

Programa:

Tema 1: Introducción. (7,5h)

Estados de tensión y deformación en dos y tres dimensiones. Círculos de Mohr de tensión y de deformación en dos y tres dimensiones. Relaciones tensión-deformación en el campo elástico. Teoría de la elasticidad. Criterios de plasticidad.

Tema 2: Comportamiento durante la deformación. (7,5h)

Defectos de la red cristalina. Deformación plástica por movimiento de dislocaciones y por maclaje. Interacciones entre dislocaciones y otros defectos de la red. Mecanismos de endurecimiento durante la deformación plástica. Efecto de la temperatura y de la velocidad de deformación.

Tema 3: Forja. (6h)

Estados de tensión y deformación en procesos de forja. Análisis de la fuerza de forja. Procesos de forja.

Tema 4: Laminación. (9h)

Fuerzas y relaciones geométricas en el laminado. Estados de tensión en procesos de laminación. Análisis de la fuerza de laminación. Laminación en caliente. Laminación en frío.

Tema 5: Estampación y embutición. (7,5h)

Estados de tensión y deformación en procesos de estampación y embutición. Criterios de fallo. Análisis de la fuerza de punzón y frenos. Procesos especiales.

Tema 6: Extrusión y trefilado (7,5h)

Estados de tensión y deformación en procesos de extrusión y trefilado. Condiciones del proceso de extrusión y de trefilado. Productos y aplicaciones.

Prácticas de laboratorio:

- 1. Introducción a la búsqueda bibliográfica sistemática. Búsqueda de normas. (2h)
- 2. Simulación de un proceso de embutición mediante elementos finitos. (4h)
- 3. Caracterización de materiales laminados. Determinación del límite elástico. (2h)
- 4. Caracterización de materiales laminados. Determinación del coeficiente de Anosotropia R. (2h)
- 5. Caracterización de materiales laminados. Determinación del módulo de elasticidad y del coeficiente de Poisson.(2h)

Actividades no presenciales:

1. Utilización de un programa de simulación por elementos finitos para establecer las condiciones óptimas de embutición de una pieza específica. (7h)

Bibliografía básica:

- 1. DIETER. "Mechanical metallurgy". McGraw Hill.
- 2. GROOVER, M.P. "Fundamentos de Manufactura Moderna. Materiales, procesos y sistemas". Prentice Hall Hispanoamericana. 1997

Bibliografía complementaria:

1. KALPAKJIAN, S.; SCHMID, S.R.; "Manufactura, ingeniería y tecnología". Pearson Educación. México. 2002.

Sistema de evaluación:					
Controles de seguimiento:	Primero:	25%	Segundo: 0%	Prueba fin	al: 50%
No presencialidad: 159	%		Prácticas: 10%	Otr	ra: 0%